Skip to main content
Log in

The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetlands in many inland catchments are being subjected to increasing salinity. To expand our limited understanding of how increasing salinity will alter carbon and nutrient dynamics in freshwater sediments, we carried out microcosm experiments to examine the acute effects of increasing salinity on the anaerobic cycling of carbon, nutrients (N, P, and S), metals (Fe and Mn), and microbial community structure in sediments from a non-salt-impacted freshwater wetland. Sediments were collected from a wetland on the River Murray floodplain, south eastern Australia and incubated with NaCl concentrations ranging from 0 to 100 mmol L−1. Increasing NaCl concentration led to the immediate release of between about 80 and 190 μmol L−1 ammonium and 235 to 3300 μmol L−1 Fe(II) from the sediments, the amount released ‘increasing with NaCl concentration. Conversely, net phosphate release decreased with increasing NaCl concentration. The overall microbial community structure, determined from phospholipid fatty acid profiles, changed only at the highest NaCl loadings, with evidence of a decrease in microbial diversity. Bacterial community structure, determined by examining terminal restriction fragment length polymorphism (T-RFLP) of the bacterial 16S rRNA gene, showed little response to increasing NaCl concentration. Conversely, the archaeal (methanogen) population, determined by examining T-RFLP of the archaeal 16S rRNA gene, showed significant changes with increasing NaCl loading. This shift corresponded with a significant decrease in methane production from salt-impacted sediments and therefore shows a linkage between microbial community structure and an ecosystem process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • APHA. 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Baldwin, D. S. 1996. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnology and Oceanography 41: 1725–1732.

    Article  Google Scholar 

  • Baldwin, D. S., A. M. Mitchell, and J. M. Olley. 2002. Pollutantsediment interactions: sorption reactivity and transport of phosphorus, p. 265–280. In P. M. Haygarth and S. C. Jarvis (eds.) Agriculture, Hydrology and Water Quality. CABI Publishing Walingford, UK.

    Google Scholar 

  • Capone, D. G. and R. P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments. Contrasts in anaerobic carbon metabolism. Limnology and Oceanography 33: 725–750.

    CAS  Google Scholar 

  • Chin, H. J., T. Lucklow, and R. Conrad. 1999. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Applied and Environmental Microbiology 65: 2341–2349.

    CAS  PubMed  Google Scholar 

  • Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    Article  CAS  Google Scholar 

  • Conrad, R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology 28: 193–202.

    Article  CAS  Google Scholar 

  • Findlay, R. H. and F. C. Dobbs. 1993. Quantitative description of microbial communities using lipid analysis, p. 271–284. In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis, Boca Raton, FL, USA.

    Google Scholar 

  • Finlay, B. J., S. C. Maberly, and J. I. Cooper. 1997. Microbial diversity and ecosystem function. Oikos 80: 209–213.

    Article  Google Scholar 

  • Gardner, W. S., S. P. Seitzinger, and J. M. Malczyk. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and fresh-water sediments—does ion-pairing affect ammonium flux. Estuaries 14: 157–166.

    Article  CAS  Google Scholar 

  • Ghassemi, F., A. J. Jakeman, and H. A. Nix. 1995. Salinisation of Land and Water Resources. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Grace, M. R., T. M. Hislop, B. T. Hart, and R. Beckett. 1997. Effects of saline groundwater on the aggregation and settling on suspended particles in a turbid Australian River. Colloid Surface A 120: 123–141.

    Article  CAS  Google Scholar 

  • Gribben, D. L., G. N. Rees, and R. L. Croome. 2003. Anoxygenic phototrophic bacteria and aerobic phototrophs in Normans Lagoon, a ‘billabong’ adjacent to the Murray River, south-eastern Australia. Lakes and Reservoirs: Research and Management 8: 95–104.

    Article  Google Scholar 

  • Großkopf, R., P. H. Janssen, and W. Liesack. 1998. Diversity of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology 64: 960–969.

    PubMed  Google Scholar 

  • Hart, B. T., B. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith, and K. Swadling. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.

    Google Scholar 

  • House, W. A. 1999. The physio-chemical conditions for the precipitation of phosphate with calcium. Environmental Technology 20: 727–733.

    Article  CAS  Google Scholar 

  • Ishii, H., H. Koh, and K. Satoh. 1982. Spectroscopic determination of manganese utilizing metal ion substitution in the cadmium-α-β-γ-ςtetrakis (4-carboxyphenol) porphine complex. Analytica Chimica Acta 136: 347–352.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and M. J. Klug. 1983. Sulfate reducers can out compete methanogens at freshwater sulfate concentrations. Applied and Environmental Microbiology 45: 187–192.

    CAS  PubMed  Google Scholar 

  • Mishra, S. R., P. Pattnaik, N. Sethunathan, and T. K. Adhya. 2003. Anion-mediated salinity affecting methane in a flooded alluvial soil. Geomicrobiology Journal 20: 579–586.

    Article  CAS  Google Scholar 

  • Mitchell, A. M. and D. S. Baldwin. 1998. Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments. Limnology and Oceanography 43: 481–487.

    CAS  Google Scholar 

  • Mitchell, A. M. 2002. Anaerobic nutrient cycles in freshwater sediments. Ph.D. Thesis, Charles Sturt University, Albury, NSW, Australia.

    Google Scholar 

  • Mitchell, A. M., D. S. Baldwin, and G. N. Rees. 2005. Alterations to potential phosphorus release processes from anaerobic freshwater sediments with additions of different species of labile carbon. p. 43–54. In L. Serrano and H. Golterman (eds.) Phosphates in Sediments. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Nielsen, D. N., M. A. Brock, G. N. Rees, and D. S. Baldwin. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51: 655–665.

    Article  Google Scholar 

  • Oremland, R. S. 1988. Biogeochemistry of methanogenic bacteria, p. 641–706. In A. J. B. Zehnder (ed) Biology of Anaerobic Microorganisms. Wiley, New York, NY, USA.

    Google Scholar 

  • Pattnaik, P., S. R. Mishra, K. Bharati, N. Sethunathan, and T. K. Adhya. 2000. Influence of salinity on methanogenesis and associated microflora in tropical rice soils. Microbiological Research 155: 215–220.

    CAS  PubMed  Google Scholar 

  • Perski, H. J., P. Schönheit, and R. K. Thauer. 1982. Sodium dependence of methane formation in methanogenic bacteria. FEBS Letters 143: 323–326.

    Article  CAS  Google Scholar 

  • Postel, S. 1999. Pillar of Sand-Can the Irrigation Miracle Last? W.W Norton and Co., New York, NY, USA.

    Google Scholar 

  • Rinzema, A., J. van Lier, and G. Lettinga. 1998. Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme and Microbial Technology 10: 24–32.

    Article  Google Scholar 

  • Roden, E. E. and J. W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139: 347–378.

    CAS  Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen, and N. P. Sloth. 1999. Effects of salinity on NH +4 adsorption capacity, nitrification and denitrification in Danish estuarine sediments. Estuaries 22: 21–30.

    Article  CAS  Google Scholar 

  • Schultz, S. and R. Conrad. 1996. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiology Ecology 20: 1–14.

    Article  Google Scholar 

  • Seitzger, S. P., W. S. Gardner, and A. K. Spratt. 1991. The effect of salinity on ammonium sorption in aquatic sediments—implications for aquatic benthic nutrient cycling. Estuaries 14: 167–174.

    Article  Google Scholar 

  • Sorenson, J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology 43: 319–324.

    Google Scholar 

  • Stumm, W. and J. Morgan. 1981. Aquatic Chemistry, 2nd edition. Wiley, New York, NY, USA.

    Google Scholar 

  • Sundareshwar, P. V. and J. T. Morris. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography 44: 1693–1701.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. 1974. Determination of sulphate in water samples. Sulphur Institute Journal Summer: 11–13.

  • Virtue, P., P. D. Nichols, and P. I. Boon. 1996. Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. Journal of Microbiological Methods 25: 177–185.

    Article  CAS  Google Scholar 

  • Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173: 697–703.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren S. Baldwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, D.S., Rees, G.N., Mitchell, A.M. et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26, 455–464 (2006). https://doi.org/10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2

Key Words

Navigation